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Anish, Jiang, Ngo, Bao Section 1: Introduction

1. Introduction

”Please forget everything you have learned in school; for you haven’t learned it. Please keep

in mind at all times the corresponding portions of your school curriculum; for you haven’t

actually forgotten them.”

— Edmund Landau, Foundations of Analysis Prefaces

1.1. Motivation

In this celebration, we will prove the Fundamental Theorem of Arithmetic given a few

axiomatic assumptions (2.1, 2.3, 2.4). We aim to maximize the celebratory effect of our

endeavor, and thus our exposition shall meet the following specifications:

1. Rigor and Clarity: We will present a rigorous and clear proof of the Fundamental

Theorem of Arithmetic, ensuring that each step is justified and comprehensible.

2. Intuition: While the proof may involve complex concepts, we will provide intuitive

explanations and examples to help deepen understanding.

3. Deep Thoughts About Simple Things: We encourage readers to reflect on the

profound implications of seemingly simple concepts, such as prime numbers and fac-

torization. By exploring the depths of these elementary ideas, we can uncover the

remarkable intricacies of number theory and appreciate the power of mathematical

reasoning.

1.2. Problem Statement

The Fundamental Theorem of Arithmetic states that every integer whose absolute

value is greater than 1 can be represented uniquely as a product of prime numbers, up to

the order of the factors.

Specifically, for all a ∈ Z \ {−1, 0, 1 }, there exist unique sets P ⊆ P, E ⊆ Z+ with n ∈ Z+

terms such that a = ±
n∏

i=1

peii , for pi ∈ P , ei ∈ E.
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1.3. Roadmap

1. Given our three axiomatic assumptions (2.1, 2.3, 2.4), we can construct the set Z and

discuss fundamental properties of the set.

• Define order in the set, inequalities.

• Then we define basic arithmetic operations, addition, subtraction, exponents.

2. We then look at divisibility in Z and understand the concept of gcd and subsequent

properties.

3. With the new idea of divisibility we begin defining prime numbers and properties we

may use.

4. We explore prime numbers further and prove important theorems like Euclid’s lemma

and the existence of prime factorizations.

5. Using all these results and tools we construct an argument to prove the fundamental

theorem of arithmetic.

1.3.1. Read me!

Proofs for some lemmas omitted and instead referred to in the appendix for

readability.

2. Axioms

2.1. Ring Axioms

The following Ring Axioms define properties of addition (+) and multiplication (·) under Z.
The operations are binary — that is, for all a, b ∈ Z, a+ b ∈ Z and a · b or simply ab ∈ Z.

For all a, b, c ∈ Z,

Axiom 1 (Commutativity). a+ b = b+ a, ab = ba.

Axiom 2 (Associativity). a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c.

Axiom 3 (Distributivity). a(b+ c) = ab+ ac.

Page 3 of 16
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Axiom 4 (Additive Identity). There exists some 0 ∈ Z such that a+ 0 = a.

Axiom 5 (Additive Inverse). There exists some −a ∈ Z such that a+ (−a) = 0.

Axiom 6 (Multiplicative Identity). There exists some 1 ∈ Z such that a · 1 = a.

2.1.1. Facts by Logic

Fact 1. For all a, b, c ∈ Z, if a = b, then a+ c = b+ c.

Fact 2. For all a, b, c ∈ Z, if a = b, then ac = bc.

Definition 1 (Unequal). For all a, b ∈ Z, a ̸= b ⇐⇒ ¬(a = b).

2.2. Subsequent Properties of Ring Axioms

These lemmas can be derived using the ring and order axioms. The proofs for these lemmas

are omitted here for readability; you can find them listed in the appendix here: 1.

Lemma 1 (Uniqueness of Additive Identity). For all a ∈ Z, there is only one 0 ∈ Z such

that a+ 0 = a.

Lemma 2 (Uniqueness of Multiplicative Identity). For all a ∈ Z, there is only one 1 ∈ Z
such that a · 1 = a.

Lemma 3. For all a, b, c ∈ Z, if a+ b = a+ c, then b = c.

Lemma 4 (Uniqueness of Additive Inverse). For all a ∈ Z, there is only one −a ∈ Z such

that a+ (−a) = 0.

Lemma 5. For all a ∈ Z, a · 0 = 0.

Lemma 6. For all a ∈ Z, −a = (−1) · a.

Corollary 1. For all a, b ∈ Z, −(a+ b) = −a+ (−b).

Corollary 2. 0 = −0.

Corollary 3. For all a ∈ Z, −a ∈ Z.

Lemma 7. For all a ∈ Z, −(−a) = a.

Lemma 8. For all a, b ∈ Z, −(ab) = (−a)b = a(−b).
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Lemma 9. For all a, b ∈ Z, (−a)(−b) = ab.

Definition 2 (Subtraction). For all a, b ∈ Z, define a− b = a+ (−b).

Lemma 10 (Closure Under Subtraction). For all a, b ∈ Z, a− b ∈ Z.

Lemma 11 (Inverse Associativity of Subtraction). For all a, b, c ∈ Z, a−(b−c) = (a−b)+c.

Lemma 12 (Distributivity of Subtraction). For all a, b, c ∈ Z, a(b− c) = ab− ac.

Lemma 13. For all a, b, c ∈ Z, a = b ⇐⇒ a− c = b− c.

2.3. Order Axioms

To establish a clear notion of order in Z, we introduce the following set of axioms that de-

scribes a nonempty Z+ ⊆ Z:

For all a, b ∈ Z+,

Axiom 7 (Additive Closure). a+ b ∈ Z+.

Axiom 8 (Multiplicative Closure). ab ∈ Z+.

Axiom 9 (Trichotomy). For all n ∈ Z, exactly one of the following holds: n ∈ Z+, n = 0,

or −n ∈ Z+.

2.3.1. Negative Integers

Definition 3 (Z−). By Axiom 9 (Trichotomy), there exists a nonempty Z− ⊆ Z where

Z− = Z \ {Z+ ∪ 0 }.

Lemma 14. For all a, b ∈ Z−, ab ∈ Z+.

2.3.2. Inequalities

Definition 4. For all a, b ∈ Z, we define a > b ⇐⇒ a + (−b) ∈ Z+, a ≥ b ⇐⇒ a >

b or a = b. Furthermore, a < b ⇐⇒ b > a, and a ≤ b ⇐⇒ b ≥ a.

Theorem 1 (Relation Trichotomy). For all a, b ∈ Z, exactly one of the following is true:

a < b, a = b, or a > b.
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Proof. Let a, b ∈ Z. Consider a + (−b). By Trichotomy, either a + (−b) ∈ Z+, a +

(−b) = 0, or −(a + (−b)) ∈ Z. Notice, −(a + (−b))
(Corollary 1)

= −a + −(−b)
(Lemma 7)

=

−a+ b
(Axiom 1: Commutativity)

= b+ (−a). Further, notice

a− b = 0

a− b+ b = 0 + b

a+ ((−b) + b) = 0 + b

a+ 0 = b

a = b

As such, either a > b, a = b, or b > a =⇒ a < b.

Corollary 4 (Unequal). For all a, b ∈ Z, a ̸= b ⇐⇒ a > b or a < b.

Lemma 15. For a, b, c ∈ Z, if a ≤ b and b ≤ c, a ≤ c.

Proof. Let a, b, c ∈ Z.

Lemma 16. For all a, b, c, d ∈ Z, if a < b =⇒ c < d, then a ≤ b =⇒ c ≤ d.

Lemma 17. For all a, b, c, d ∈ Z, if a < b =⇒ c < d, then a > b =⇒ c > d.

Lemma 18. For all a, b ∈ Z, c ∈ Z+, a < b ⇐⇒ ac < bc.

Lemma 19. For all a, b ∈ Z, c ∈ Z−, a < b ⇐⇒ ac > bc.

Lemma 20. For all a, b, c ∈ Z, a < b ⇐⇒ a+ c < b+ c.

2.4. Well-Ordering Principle

Axiom 10. Every nonempty subset S of positive integers contains a least element; that is,

there is some element a of S such that a ≤ b for all elements b of S.

2.4.1. Ordering Principles

Corollary 5. For all a ∈ Z+, 1 ≤ a.
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Proof. Consider set S = Z+. By the Well-Ordering Principle, there is a least element of

S called l. The number 1 is an element in Z+, so l ≤ 1. The number l is in Z+, so

(l)(l) ≤ (l)(1) = l. There cannot be an element smaller than l, so (l)(l) = (l)(1), and l = 1.

Therefore, the least element l is 1.

Corollary 6. For all a ∈ Z−, −1 ≥ a.

Proof. Let a ∈ Z−. Consider a

Theorem 2. For all nonempty D ⊆ Z where D has a finite number of terms, there exist

l, g ∈ D such that for all d ∈ D, l ≤ d ≤ g.

3. Divisibility

3.1. Division

An important property of the elements of Z is that given any a, b ∈ Z it follows that a|b or

a ̸ | b

Definition 5 (Divisibility). For all a, b ∈ Z, we write a | b if and only if there exists q ∈ Z
such that b = aq.

Definition 6. For all a, b ∈ Z, we write a ∤ b if and only if there does not exist q ∈ Z such

that b = aq.

Lemma 21. For all a, b ∈ Z+, if a | b, then a ≤ b.

Proof. Let a, b ∈ Z+. Suppose a | b, then for some k ∈ Z, b = ak. As such, a ≤ b ⇐⇒
a(k−1) ≥ 0, so we now show k ∈ Z+. Assume otherwise for contradiction, then either k = 0

or −k ∈ Z+. In the first case, b = ak = a · 0 = 0, which is a contradiction. In the second,

−b = −ak = a(−k) ∈ Z+, which is a contradiction. As such, k ∈ Z+, and we are done.

Lemma 22. For all a, b, c ∈ Z, if c | a and c | b, then c | ar + bs for r, s ∈ Z.

Proof. Let a, b, c ∈ Z. Suppose c | a and c | b, then there exist m,n such that a = cm, b = cn.

Notice,

ar + bs = (cm)r + (cn)s

= c(mr) + c(ns)

= c(mr + ns)
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. As such, c | ar + bs.

Theorem 3 (Division Algorithm). For all a, b ∈ Z where b ̸= 0, a = bq+r for some q, r ∈ Z

where 0 ≤ r < |b|.

Proof. Let a ∈ Z. Then, exactly one of the following holds: a = 0, a ∈ Z+, −a ∈ Z+. We

proof the statement by showing it is true for each case.

Consider a = 0. Notice, for all b ∈ Z where b ̸= 0, a = bq + r for q = 0, r = 0, as desired.

Consider a ∈ Z+. Let S = {n ∈ Z+ : n ̸= bq + r for b, q, r ∈ Z where b ̸= 0, 0 ≤ r < |b| }.
Since S ⊆ Z+, there exists s ∈ S such that for all n ∈ S, 1 ≤ s ≤ n. As such, s− 1 ̸∈ S and

is either 0 or an element of Z+. Thus, there exist b, q, r ∈ Z where b ̸= 0 and 0 ≤ r < |b|
such that s− 1 = bq+ r =⇒ s = bq+(r+1). Put r̂ = r+1. Now, the value of r̂ lies within

exactly one of two cases: 1 ≤ r̂ < |b|, or r̂ = |b|. We aim to show that both cases would

lead to contradictions, which would imply S = ∅. In the former, since r̂ is within the range

[0, |b|), we have a contradiction. In the latter, we have s = bq+ r̂ = bq+ |b|. Since b ̸= 0, it is

either positive, where s = bq+ b = b(q+1)+ 0, or negative, where s = bq− b = b(q− 1)+ 0.

Since q + 1 ∈ Z, q − 1 ∈ Z, and 0 ∈ [0, |b|), this case also yields a contradiction. As such,

the statement is also true under the second condition.

By the symmetry of integers across 0, the case where −a ∈ Z+ may be proven in a similar

fashion to that of when a ∈ Z+.

Corollary 7. For all a, b ∈ Z, we write a ∤ b ⇐⇒ b = aq+r for q, r ∈ Z where 0 < r < |b|.

3.2. Greatest Common Divisor

Definition 7 (Greatest Common Divisor). For all a, b ∈ Z, putD = { d ∈ Z+ : d | a and d | b },
then if there exists g ∈ D such that for all d ∈ D, d ≤ g, gcd(a, b) = g.

Lemma 23. For all a, b ∈ Z where a ̸= 0 or b ̸= 0, there exists a nonempty, finite D =

{ d ∈ Z+ : d | a and d | b }.

Proof. Let a, b ∈ Z where a ̸= 0 or b ̸= 0. We first show non-triviality of D. Put D =

{ d : d | a and d | b }. Since for all n ∈ Z, the multiplicative identity 1 | n, 1 ∈ D, so D

is nonempty. We now show that D ⊆ Z+ is finite. Let k ∈ Z+, so b + k > b. By the

contrapositive of Lemma 21, (b + k) ∤ b, so b + k ̸∈ D. As such, for all d ∈ D, d ≤ b.

Therefore, D is finite.
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Proposition 1 (Existence of Greatest Common Divisor). For all a, b ∈ Z where a ̸= 0 or

b ̸= 0, there exists gcd(a, b) ∈ Z+.

Proof. Let a, b ∈ Z where a ̸= 0 or b ̸= 0. By Lemma 23, there exists a nonempty, finite

D = { d ∈ Z+ : d | a and d | b }. As such, there exists g ∈ D such that for all d ∈ D,

1 ≤ d ≤ g. Thus, there exists positive integer gcd(a, b) = g.

Theorem 4 (Euclidean Algorithm). For all a, b ∈ Z, gcd(a− b, b) = gcd(a, b).

Proof. Let a, b ∈ Z. Put x1 = gcd(a, b), so by Definition 7, there exist m,n ∈ Z such that

a = x1m and b = x1n. Similar,y put x2 = gcd(a − b, b), so there exist p, q ∈ Z such that

a− b = x2p and b = x2q. Notice, x2p = a− b = x1(m− n), and x1n = b = x2q.

We aim to show that x1 = x2 by proving the other two relations impossible. Suppose for

contradiction that x1 < x2. By Definition 7, there exists no µ > x1 such that b = µµ′ for

µ′ ∈ Z+. Since b = x2q and x2 > x1, this is a contradiction. Thus, x1 ≥ x2. Similarly,

suppose for contradiction that x1 > x2, so there exists no µ > x2 such that a − b = µµ′ for

µ′ in Z+. Since a− b = x1(m− n), this is also a contradiction.

As such, gcd(a− b, b) = gcd(a, b), as desired.

Lemma 24 (Bezout’s Identity). For all a, b ∈ Z, there exist x, y ∈ Z such that ax + by =

gcd(a, b).

Proof. Let a, b ∈ Z. Put S = { ax+ by : x, y ∈ Z }. Define S+ = S ∩ Z+, so there exists

k ∈ S+ such that for all s ∈ S+, 1 ≤ k ≤ s. By Theorem 3 (Division Algorithm), a = kq+ r

for q, r ∈ Z, where 0 ≤ r < k. As such,

r = a− kq

= a− (ax+ by)q

= a− axq − byq

= a(1− qx) + b(−qy)

, so r ∈ S. Since r < k, r ̸∈ S+. Furthermore, since r ≥ 0, r = 0. As such, a = kq =⇒ k | a.
With a similar process, it may be shown that k | b. Then, by Definition 7, k ≤ gcd(a, b).

Since gcd(a, b) | a and gcd(a, b) | b, by Lemma 22, gcd(a, b) | k. By Lemma 21, gcd(a, b) ≤ k.

As such, gcd(a, b) = k = ax + by. We note further that it is in fact the least positive linear

combination of a, b.
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Lemma 25 (The Fundamental Lemma). For all a, b, c ∈ Z, if a | bc and gcd(a, b) = 1, then

a | c.

Proof. Suppose a | bc and gcd(a, b) = 1. Then, by Lemma 24 (Bezout’s Identity),

ax+ by = 1

c(ax+ by) = c

(ac)x+ (bc)y = c

Since a | bc, bc = an for n ∈ Z. As such,

(ac)x+ (an)y = c

a(cx+ ny) = c

As such, a | c.

4. Primes

Definition 8 (Prime Numbers). For all p ∈ Z+ \ { 1 }, p is prime if and only its set of

divisors D = { 1, p }.

Definition 9. We define the set of primes P = {p : p is prime}.

Definition 10. For all c ∈ Z+ \ { 1 }, c is composite if and only if c ̸∈ P.

Theorem 5. For all p ∈ Z+ \ { 1 }, p ∈ P ⇐⇒ for all k ∈ (0, p), gcd(k, p) = 1.

Proof. We prove the contrapositive. Let p ∈ Z+ \ { 1 }. Suppose there exists k ∈ (0, p) such

that gcd(k, p) ̸= 1. Put d = gcd(k, p). Then by Definition 7, d | p. Notice, by Lemma 21,

d < k < p. Further, since d ∈ Z+, d > 1. As such, there exists a third element in the set of

divisors of p, so by Definition 8, p ̸∈ P.

Corollary 8. For all c ∈ Z+ \ { 1 } where c is composite, c = ab for a, b ∈ Z+ \ { 1 }. Notice,
a, b < c.

Page 10 of 16



Anish, Jiang, Ngo, Bao Section 5: 4.1 Existence of Prime Divisors

4.1. Existence of Prime Divisors

Lemma 26. For all a ∈ Z+ where a ̸= 1, there exists p ∈ P such that p | a.

Proof. Let a ∈ Z+ where a ̸= 1. Then, a is either prime or composite. The first case is

trivial, as a | a and a ∈ P. Now we consider the second case, where we aim to show that

there exists no positive composite number without prime factors.

Put S = { s ∈ Z+ \ { 1 } : s is composite, and for all d ∈ Z+ where d | s, d ̸∈ P }, then there

exists l ∈ S such that for all s ∈ S, s ≥ l. Since s is composite, by Corollary 8, s = mn for

m,n ∈ Z+ where m < s, n < s. As such, m,n ̸∈ S, so there exist p1, p2 ∈ P such that p1 |m,

p2 | n. Then, for k1, k2 ∈ Z+, m = p1k1, n = p2k2. It follow that s = ab = p1k1p2k2, so p1 | s
and p2 | s, which is a contradiction. Therefore, s = ∅, and we are done.

Lemma 27. For all a ∈ Z \ {−1, 0, 1 }, there exists p ∈ P such that p | a.

Proof. Let a ∈ Z \ {−1, 0, 1 }, then either a ∈ Z+ \ { 1 } or −a ∈ Z+ \ {−1 }. The first case
is true by Lemma 26. We now consider the second. By Lemma 26, there exists p ∈ P such

that p | − a. As such, for k ∈ Z,

−a = pk

(−1)a = pk

a = (−1)pk

Thus, p | a, and we are done.

Lemma 28. For all a ∈ Z \ {−1, 0, 1 }, a = ±
n∏

i=1

pi for pi ∈ P.

Proof. Given the symmetry of integers over 0, we simply need to show that the statement is

true for positive integers. Let a ∈ Z+. Put S = { s ∈ Z+ \ { 1 } : s ̸=
n∏

i=1

pi for pi ∈ P }, then

there exists l ∈ S such that for all s ∈ S, l ≤ s. By Lemma 27, there exists p ∈ P such that

l = pm for m ∈ Z+. Notice, l cannot be prime, as l | l. Thus, l is composite, so m < s. As

such, m ̸∈ S, so m =
n∏

i=1

pi for pi ∈ P. As such, l = pm = p
n∏

i=1

pi. This is a contradiction,

so S = ∅ and we are done.
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5. Fundamental Theorem of Arithmetic

5.1. Euclid’s Lemma

Lemma 29 (Euclid’s Lemma). For all p ∈ P, if p | ab, then p | a or p | b.

Proof. Let p ∈ P. We prove by contradiction. Suppose p | ab, and that p ∤ a and p ∤ b for

contradiction. We aim to show that gcd(a, p) = gcd(b, p) = 1. If this is true, by Lemma 25

(Fundamental Lemma), p | b, which is a contradiction as gcd(b, p) = 1.

We consider two cases: a < p and a > p. In the former, by Theorem 5, gcd(a, p) = 1.

In the latter, by Corollary 7 a = pq + r for q, r ∈ Z where 0 < r < p. By Theorem 4,

gcd(a, p) = gcd(pq+r, p) = gcd(r, p) = 1. Notice, gcd(b, p) = 1 could be proved similarly.

Lemma 30 (Generalized Euclid’s Lemma). For all p ∈ P, if p |
∏n

i=1 ai for ai ∈ Z, then
p | ai for some i where 1 ≤ i ≤ n.

Proof. Let p ∈ P. Suppose p |
∏n

i=1 ai for ai ∈ Z. Put S = { s ∈ Z+ : p ∤ ai for all i ∈ [1, n] },
then there exists l ∈ S such that for all s ∈ S, l ≤ s. By Lemma 29, p | a1 or p |

∏n
i=2 ai.

Then, a2a3...as =
s
a1

≤ s. This means that s
a1

/∈ S since s is the least element of S. So, p | a2
or p | a3 . . . p | an. However, this is a contradiction since we assumed that p ∤ a1, p ∤ a2,

... and, p ∤ ak. Therefore, S is empty and so, if p | a1a2...an for all rational primes p, then

p | ai for some index i with 1 ≤ i ≤ n.

5.2. Fundamental Theorem of Arithmetic

Theorem 6 (Fundamental Theorem of Arithmetic). For all a ∈ Z \ {−1, 0, 1 }, there exist

unique sets P ⊆ P, E ⊆ Z+ with n ∈ Z+ terms such that a = ±
n∏

i=1

peii , for pi ∈ P , ei ∈ E.

Proof. Let a ∈ Z \ {−1, 0, 1 }. By Lemma ??, a = ±
n∏

i=1

pi for pi ∈ P . In order to prove

its uniqueness, we must show no a ∈ Z admits 2 different prime factorizations. If there is

any such a, we pick the smallest. We can factor a = ±
n∏

i=1

pi = ±
m∏
i=1

qi, where we assume

p1, p2, ...pn ̸= q1, q2, ...qm. Clearly, p1 ̸= q1, so without loss of generality, we assume p1 < q1

such that p1 − q1 > 0. So we can write (p1 − q1)p2 · · · pk = a. Then:

p1p2 · · · pk︸ ︷︷ ︸
a

−q1p2 · · · pk = a
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Therefore this is equivalent to: q1q2 · · · qk − q1p2 · · · pk = a =⇒ q1(q2 · · · qk − p2 · · · pk) = a.

It follows that q1|a. Then it follows that a
q1

is another factorization for a violating the

minimality of a assumed under WOP. Therefore by contradiction there can only exist one

unique factorization for any given a ∈ Z.

6. Appendix

6.1. Subsequent Properties of Ring Axioms

Lemma 1 (Uniqueness of Additive Identity). For all a ∈ Z, there is only one 0 ∈ Z such

that a+ 0 = a.

Proof. Suppose for contradiction that there exists 0̂ ∈ Z such that for all a ∈ Z, a + 0̂ = a

and 0̂ ̸= 0. Notice, 0̂
(Axiom 4: Additive Identity)

= 0̂ + 0
(Axiom 1: Commutativity)

= 0 + 0̂
(Supposition)

= 0,

which is a contradiction. As such, 0 is unique.

Lemma 2 (Uniqueness of Multiplicative Identity). For all a ∈ Z, there is only one 1 ∈ Z
such that a · 1 = a.

Proof. Suppose for contradiction that there exists 1̂ ∈ Z such that for all a ∈ Z, a · 1̂ = a

and 1̂ ̸= 1. Notice, 1̂
(Axiom 6: Multiplicative Identity)

= 1̂ · 1 (Axiom 1: Commutativity)
= 1 · 1̂ (Supposition)

= 1,

which is a contradiction. As such, 1 is unique.

Lemma 3. For all a, b, c ∈ Z, if a+ b = a+ c, then b = c.

Proof. Let a, b, c ∈ Z. Suppose a+b = a+c. Notice, by Fact 1, (−a)+(a+b) = (−a)+(a+c).

With Axiom 2 (Associativity), (−a+a)+ b = (−a+a)+ c. Swapping the terms by Axiom 1

(Commutativity), (a + (−a)) + b = (a + (−a)) + c. Then, by Axiom 5 (Additive Inverse),

0 + b = 0 + c. As such, by Axiom 4 (Additive Identity), b = c.

Lemma 4 (Uniqueness of Additive Inverse). For all a ∈ Z, there is only one −a ∈ Z such

that a+ (−a) = 0.

Proof. Let a ∈ Z. Suppose for contradiction that there exists −̂a ∈ Z such that a+(−̂a) = 0

and −a ̸= −̂a. Notice, a + (−a) = 0 = a + (−̂a). By Lemma 3, −a = −̂a. This is a

contradiction, and we are done.
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Lemma 5. For all a ∈ Z, a · 0 = 0.

Proof. Let a ∈ Z. Notice, by Axiom 2.1 (Additive Identity), 0 + 0 = 0, and by Fact 1

a · (0 + 0) = a · 0. Then, by Axiom 3 (Distributivity), a · 0 + a · 0 = a · 0. By Fact 1,

−(a ·0)+(a ·0+a ·0) = −(a ·0)+a ·0. We arrange the equation with Axiom 2 (Associativity)

and Axiom 1 (Commutativity), deriving a ·0+(a ·0+(−(a ·0))) = a ·0+(−(a ·0)). Then, by
Axiom 5 (Additive Inverse), a ·0+0 = 0. Now, by Axiom 4 (Additive Identity), a ·0 = 0.

Lemma 6. For all a ∈ Z, −a = (−1) · a.

Proof. Let a ∈ Z. Notice, by Axiom 5 (Additive Inverse), 1 + (−1) = 0. By Fact 2,

a·(1+(−1)) = a·0 which can be rewritten as a·1+a·(−1) = a·0 because (2.1 Distributivity).

This evaluates to a+ a · (−1) = a · 0 due to (2.1 Multiplicative Identity) and then to a+ a ·
(−1) = 0 because of (Lemma 5). Afterwards, we add to both sides, −a + (a + a · (−1)) =

−a+0(2.1.1 Logic) which gives us −a+(a+a · (−1)) = −a by (2.1 Additive Identity). This

equation can be regrouped as, (−a + a) + a · (−1) = −a by (2.1 Associativity) and then

(−1) · a + (a + (−a)) = −a by (2.1 Commutativity). It evaluates to (−1) · a + 0 = −a by

(2.1 Additive Inverse) and finally giving us (−1) · a = −a from (2.1 Additive Identity).

Corollary 2. 0 = −0.

Proof. Notice, −0
(Lemma 6)

= (−1) · 0 (Lemma 5)
= 0.

Lemma 8. For all a, b ∈ Z, −(ab) = (−a)b = a(−b).

Proof. Let a, b ∈ Z. Notice, that (−a)b = ((−1) ·a)b from (Lemma 6) which is the equivalent

of (−a)b = (−1)(ab) by (2.1 Associativity). This gives us (−a)b = −(ab) by (Lemma 6).

Similarly, a(−b) = a((−1) · b) = a(b · (−1)) = (ab)(−1) = (−1)(ab) = −(ab) by (Lemma 6),

(2.1 Commutativity), (2.1 Associativity), (2.1 Commutativity), (Lemma 6) respectively.

Lemma 9. For all a, b ∈ Z, (−a)(−b) = ab.

Proof. Let a, b ∈ Z. Notice, −(−a) = a by (Lemma 7). Then we multiply both sides

by, (−(−a))(−b) = a(−b) (2.1.1 Logic) which is simplified to (−(−a))(−b) = −(ab) due

to (Lemma 8). Then rewrite it as, ((−1)(−a))(−b) = (−1)(ab) by following (Lemma 6)

which can also be rewritten as (−1)((−a)(−b)) = (−1)(ab) by (2.1 Associativity). We

then multiply both sides by, (−1)((−1)((−a)(−b))) = (−1)((−1)(ab)) (2.1.1 Logic). This

is rewritten as ((−1)(−1))((−a)(−b)) = ((−1)(−1))(ab) because of (2.1 Associativity). It
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then evaluates to (−(−1))((−a)(−b)) = (−(−1))(ab) by (Lemma 6) and further simplified

as (1)((−a)(−b)) = (1)(ab) due to (Lemma 7). This is the equivalent of (−a)(−b) = ab by

(2.1 Multiplicative Identity).

Lemma 11. For all a, b, c ∈ Z, a− (b− c) = (a− b) + c.

Proof. Let a, b, c ∈ Z. Notice, a−(b−c) = a+(−(b+(−c))) (Definition 2) = a+((−1)(b+

(−1) ·c)) (Lemma 6) = a+((−1) · b+(−1) · ((−1) ·c)) (Axiom 3) = (a+(−1) · b)+((−1) ·
(−1))·c (Axiom 2) = (a+(−1)·b)+(1·1)·c (Lemma 9) = (a+(−1)·b)+c·(1·1) (Lemma 1)

= (a+ (−1) · b) + c (Axiom 6) = (a+ (−b)) + c (Lemma 6) = (a− b) + c (Definition 2)

Hence, for all a, b, c ∈ Z, a− (b− c) = (a− b) + c.

Lemma 12. For all a, b, c ∈ Z, a(b− c) = ab− ac.

Proof. Let a, b, c ∈ Z. Put d = −c, then by Corollary 3, d ∈ Z. By Definition 2, we are

essentially showing a = b ⇐⇒ a+ d = b+ d. By Fact 1 and Lemma 3, both directions are

true.

Lemma 13. For all a, b, c ∈ Z, a = b ⇐⇒ a− c = b− c.

Proof. Let a, b, c ∈ Z. Put d = −c, then by Corollary 3, d ∈ Z. By the Definition 2, we are

essentially showing a = b ⇐⇒ a+ d = b+ d. By Fact 1 and Lemma 3, both directions are

true.

Lemma 18. For all a, b ∈ Z, c ∈ Z+, a < b ⇐⇒ ac < bc.

Proof. Assume for the sake of contrapositive that ac > bc, this means that ac− bc > 0. We

can rewrite it as c(a − b) > 0. This means we have two cases of either both c and a − b

being positive or both or negative(but we don’t consider the negative case because c ∈ Z+).

In the case where both integers are positive, we have c > 0 and a− b > 0. a− b > 0 can be

rewritten as a > b since you add b to both sides. This means that a < b isn’t possible.

Lemma 19. For all a, b ∈ Z, c ∈ Z−, a < b ⇐⇒ ac > bc.

Proof. Assume for the sake of contrapositive that ac < bc, this means that 0 < bc− ac. We

can rewrite it as 0 < c(b − a). This means we have two cases of either both c and b − a

being positive or both or negative(but we don’t consider the positive case because c ∈ Z−).

In the case where both integers are negative, we have c < 0 and b− a < 0. b− a < 0 can be

rewritten as b < a since you add a to both sides. This means that a < b isn’t possible.
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6.2. Subsequent Properties of Order Axioms

Lemma 31. For all a, b ∈ Z, if ab = 0, then either a = 0 or b = 0.

Proof. We prove the contrapositive. Suppose a ̸= 0, b ̸= 0. Then there are four cases: either

a > 0, b > 0 and Suppose for contradiction that both of a, b ∈ Z. However this is impossible

since by 2.3, Multiplicative Closure, if a, b ∈ Z =⇒ ab ∈ Z however, 0 ̸∈ Z+. Therefore, at

least one of a, b must be ∈ Z+. Since a ̸= b, a − b ̸= 0. Therefore, a − b ∈ Z+ (WLOG).

Therefore, c = 0 (from 2.1 (Zero)). Then it follows: a − b = 0, and from 2.1 (Additive

Inverse) a = b as desired.

Lemma 32. For all a, b, c ∈ Z where c ̸= 0, if ac = bc, then a = b.

Proof. We prove the contrapositive. Let a, b, c ∈ Z such that c ̸= 0. Suppose a ̸= b, then for

k ∈ Z where k ̸= 0, a = b + k. Notice, ac = (b + k)c
2.1 Distributivity

= bk + kc. By Lemma x,

since k ̸= 0, c ̸= 0, kc ̸= 0, so ac ̸= bc.
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