Cyclicity of $\ensuremath{\mathbb{U}}$

Manu Anish, Carol Bao

ROSS Mathematics Program

July 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

"Young man, in mathematics you don't understand things, you just get used to them."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

— Neumann

What is \mathbb{U} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

What is \mathbb{U}_{16} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

- 1. $\mathbb{U}_{16} =$
- 2. $\mathbb{U}_{17} =$
- 3. $U_{69} =$

What is \mathbb{U}_{17} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

- 1. $\mathbb{U}_{16} = \{1, 3, 5, 7, 11, 13, 15\}$
- 2. $U_{17} =$
- 3. $\mathbb{U}_{69} =$

What is \mathbb{U}_{69} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

 $\begin{array}{ll} 1. \ \mathbb{U}_{16} = \{1,3,5,7,11,13,15\} \\ \\ 2. \ \mathbb{U}_{17} = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\ \\ 3. \ \mathbb{U}_{69} = \end{array}$

What is \mathbb{U}_{69} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

Examples

- 1. $\mathbb{U}_{16} = \{1, 3, 5, 7, 11, 13, 15\}$
- 2. $\mathbb{U}_{17} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$
- 3. $U_{69} =$

 $\{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 25, 26, 28, 29, \\31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 47, 49, 50, 52, 53, 55, 56, \\58, 59, 61, 62, 64, 65, 67, 68\}$

What is \mathbb{U}_{69} ?

Definition (\mathbb{U}_m)

Define \mathbb{U}_m to be the multiplicative group of elements that have an inverse in \mathbb{Z}_m .

Examples

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\begin{array}{l} \mathsf{Lemma } 0 \\ |\mathbb{U}_p| = \varphi(p) \end{array}$

Orders

Definition $(\operatorname{ord}_m(a))$

The function $\operatorname{ord}_m(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^k \equiv 1 \pmod{m}$. In other words, $\operatorname{ord}_m(a) = k$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Orders

Definition $(\operatorname{ord}_m(a))$

The function $\operatorname{ord}_m(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^k \equiv 1 \pmod{m}$. In other words, $\operatorname{ord}_m(a) = k$

Examples

Examples of Orders

Definition $(\operatorname{ord}_m(a))$

The function $\operatorname{ord}_m(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^k \equiv 1 \pmod{m}$. In other words, $\operatorname{ord}_m(a) = k$

Examples

ord₇(3) = 6

$$3^1 \equiv 1 \pmod{7}$$
 $3^3 \equiv 6 \pmod{7}$
 $3^5 \equiv 5 \pmod{7}$
 $3^2 \equiv 2 \pmod{7}$
 $3^4 \equiv 4 \pmod{7}$
 $3^6 \equiv 1 \pmod{7}$
 So the order of 3 in U₇ is 6.

Remark

 $\operatorname{ord}_m(n)$ is only defined when $\operatorname{gcd}(m, n) = 1$ (due to Bezout)

(日)((1))

Lemma 18 If $\operatorname{ord}_m(a) = r$ and $\operatorname{ord}_m(b) = s$ and $\gcd(r, s) = 1$, then $rs = \operatorname{ord}_m(ab)$

Generators

Definition

We say an element *a* is a generator of \mathbb{U}_m if every element in \mathbb{U}_m can be expressed in the form a^k , where $k \in \mathbb{Z}^+$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generators

Definition

We say an element *a* is a generator of \mathbb{U}_m if every element in \mathbb{U}_m can be expressed in the form a^k , where $k \in \mathbb{Z}^+$.

Examples

Examples of Generators

Definition

We say an element *a* is a generator of \mathbb{U}_m if every element in \mathbb{U}_m can be expressed in the form a^k , where $k \in \mathbb{Z}^+$.

Examples

$$\begin{array}{lll} 3^1\equiv 1 \pmod{7} & 3^3\equiv 6 \pmod{7} & 3^5\equiv 5 \pmod{7} \\ 3^2\equiv 2 \pmod{7} & 3^4\equiv 4 \pmod{7} & 3^6\equiv 1 \pmod{7} \end{array}$$

3 is a generator as shown from the list of congruences, it can generate all elements of $\mathbb{U}_7=\{1,2,3,4,5,6\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cyclicity

Definition \mathbb{U}_m is cyclic if there exists a generator in \mathbb{U}_m .

Cyclicity

Definition \mathbb{U}_m is cyclic if there exists a generator in \mathbb{U}_m .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples

Cyclicity

Definition \mathbb{U}_m is cyclic if there exists a generator in \mathbb{U}_m .

Examples

► Is U₇ cyclic?

Yes, \mathbb{U}_7 is cyclic since there exists a generator: namely, 3, such that it can generator all the elements in the group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So... when is \mathbb{U}_m cyclic?

m	\mathbb{U}_m	$\max(\operatorname{ord}_m(a) a \in \mathbb{U}_m)$
1	[]	1
2	[1]	1
3	[1, 2]	2
4	[1, 3]	2
5	[1, 2, 3, 4]	4
6	[1, 5]	2
7	[1, 2, 3, 4, 5, 6]	6
8	[1, 3, 5, 7]	2
9	[1, 2, 4, 5, 7, 8]	6
10	[1, 3, 7, 9]	4
11	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	10
12	[1, 5, 7, 11]	2
13	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]	12
14	[1, 3, 5, 9, 11, 13]	6
15	[1, 2, 4, 7, 8, 11, 13, 14]	4

Patterns in \mathbb{U}_m

m	\mathbb{U}_m	$\max(\operatorname{ord}_m(a) a \in \mathbb{U}_m)$
1	[]	1
2	[1]	1
3	[1, 2]	2
4	[1, 3]	2
5	[1, 2, 3, 4]	4
6	[1, 5]	2
7	[1, 2, 3, 4, 5, 6]	6
8	[1, 3, 5, 7]	2
9	[1, 2, 4, 5, 7, 8]	6
10	[1, 3, 7, 9]	4
11	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	10
12	[1, 5, 7, 11]	2
13	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]	12
14	[1, 3, 5, 9, 11, 13]	6
15	[1, 2, 4, 7, 8, 11, 13, 14]	4

Conjectures!

Given the patterns here are some conjectures we can form:

- when m is prime then, \mathbb{U}_m is cyclic
- when m is p^k where p is an odd prime then, U_m is cyclic
 when m is 2 · p^k where p is an odd prime then, U_m is cyclic
 when m is 4 then, U_m is cyclic

\mathbb{U}_m and connections to $\mathbb{Z}_m[x]$...

To prove our conjectures, we take a slight detour into the ring of polynomials modulo m. For the sake of brevity and conciseness we will be using the following theorems/lemmas to aid us (without proof):

- 1. (UFT) If f(x) is an element of $\mathbb{Z}m[x]$ and has degree *n*, then f(x) has at most *n* distinct roots
- 2. (Euler's Theorem) All units satisfy the equation $x^{\varphi(m)} 1 \equiv 0 \mod m$
- 3. If f(x) = p(x)q(x), then the set of roots of p(x) are a subset of the set of roots of f(x)

Proof that \mathbb{U}_p is cyclic

Let a be the generator of Up. Up is cyclic when $\operatorname{ord}_p(a) = \varphi(p) = p - 1$. In addition, by Euler's totient theorem, all units satisfy the equation $x^{p-1} - 1 \equiv 0 \mod m$. Let,

$$p-1=p_1^{e_1}p_2^{e_2}\ldots p_n^{e_n}.$$

Therefore,

$$oldsymbol{
ho}_i^{e_i}| oldsymbol{p}-1 \Longleftrightarrow x^{oldsymbol{
ho}_i^{e_i}}-1|x^{oldsymbol{p}-1}-1|$$

Proof that \mathbb{U}_p is cyclic (continued)

Since,

$$p_i^{e_i}|p-1 \Longleftrightarrow x^{p_i^{e_i}}-1|x^{p-1}-1$$

and,

$$p_i^{e_i-1}|p_i^{e_i} \Longleftrightarrow x^{p_i^{e_i}-1}-1|x^{p_i^{e_i}}-1|$$

The roots of $x^{p_i^{e_i}-1}-1$ is a subset of the roots of $x^{p_i^{e_i}}-1$, which is also a subset of the roots of $x^{p-1}-1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Proof that \mathbb{U}_p is cyclic (continued)

 $x^{p_i^{e_i}} - 1$ has $p_i^{e_i}$ distinct roots with order $1, p_i, p_i^2, \ldots, p_i^{e_i}$ because the orders must divide $p_i^{e_i}$

 $x^{p_i^{e_i}-1}-1$ has $p_i^{e_i}-1$ distinct roots with order $1, p_i, p_i^2, \ldots, p_i^{e_i-1}$ because the orders must divide $p_i^{e_i-1}$

So, of the $p_i^{e_i}$ roots, the number of roots with order $p_i^{e_i}$ is $p_i^{e_i}-p_i^{e_i-1}$

This means that it is always possible to find an element in \mathbb{U}_p that has order $p_i^{e_i}$ for all $i \in \mathbb{Z}^+$

Proof that \mathbb{U}_p is cyclic (continued)

Let a_1, a_2, \ldots, a_n be the units with order $p_1^{e_1}, p_2^{e_2}, \ldots, p_n^{e_n}$ respectively. $p_1^{e_1}, p_2^{e_2}, \ldots, p_n^{e_n}$ are all coprime with each other.

$$p - 1 = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$

= ord_p(a_1) × ord_p(a_2) \dots ord_p(a_n)
= ord_p(a_1a_2) × ord_p(a_3) \dots ord_p(a_n)
= ord_p(a_1a_2a_3) × ord_p(a_4) \dots ord_p(a_n)
= ord_p(a_1a_2 \dots a_n)

Since \mathbb{U}_p is closed under multiplication, $a_1a_2...a_n$ is an element of \mathbb{U}_p , more specifically, it is a generator of \mathbb{U}_p . Therefore, \mathbb{U}_p is cyclic.

Proof that \mathbb{U}_{p^k} is cyclic

Let $u \in \mathbb{U}_{p^k}$. *u* is a generator if $\operatorname{ord}(u) = \varphi(p^k)$.

$$arphi(p^k) = p^k (1 - rac{1}{p}) \ = p^{k-1} (p-1) \ = p^{k-1} (p_1^{e_1} p_2^{e_2} \dots p_n^{e_n})$$

Consider $x^{\varphi(p^k)} - 1$., Similar to the proof of before, we can show that there are units with order $p_1^{e_1}, p_2^{e_2}, \ldots, p_n^{e_n}$. Multiplying these units will allow us to construct a generator, proving that \mathbb{U}_{p^k} is cyclic.

Proof that \mathbb{U}_{2p^k} is cyclic

Using a similar argument previously, we find that

$$egin{aligned} arphi(2p^k) &= 2p^k(1-rac{1}{2})(1-rac{1}{p}) \ &= p^{k-1}(p-1) \ &= arphi(p^k) \end{aligned}$$

This means that \mathbb{U}_{p^k} and $\mathbb{U}_2 p^k$ are isomorphic. Then since \mathbb{U}_{p^k} is cyclic; therefore, $\mathbb{U}_2 p^k$ is cyclic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・