Cyclicity of \mathbb{U}

Manu Anish, Carol Bao
ROSS Mathematics Program

July 2023
"Young man, in mathematics you don't understand things, you just get used to them."

- Neumann

What is \mathbb{U} ?

Definition $\left(\mathbb{U}_{m}\right)$
Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

What is \mathbb{U}_{16} ?

Definition $\left(\mathbb{U}_{m}\right)$
Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

Examples

1. $\mathbb{U}_{16}=$
2. $\mathbb{U}_{17}=$
3. $\mathbb{U}_{69}=$

What is \mathbb{U}_{17} ?

Definition $\left(\mathbb{U}_{m}\right)$
Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

Examples

1. $\mathbb{U}_{16}=\{1,3,5,7,11,13,15\}$
2. $\mathbb{U}_{17}=$
3. $\mathbb{U}_{69}=$

What is \mathbb{U}_{69} ?

Definition $\left(\mathbb{U}_{m}\right)$

Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

Examples

$$
\begin{aligned}
& \text { 1. } \mathbb{U}_{16}=\{1,3,5,7,11,13,15\} \\
& \text { 2. } \mathbb{U}_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& \text { 3. } \mathbb{U}_{69}=
\end{aligned}
$$

What is \mathbb{U}_{69} ?

Definition $\left(\mathbb{U}_{m}\right)$

Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

Examples

$$
\begin{aligned}
& \text { 1. } \mathbb{U}_{16}=\{1,3,5,7,11,13,15\} \\
& \text { 2. } \mathbb{U}_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& \text { 3. } \mathbb{U}_{69}= \\
& \{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,25,26,28,29, \\
& 31,32,34,35,37,38,40,41,43,44,47,49,50,52,53,55,56, \\
& 58,59,61,62,64,65,67,68\}
\end{aligned}
$$

What is \mathbb{U}_{69} ?

Definition $\left(\mathbb{U}_{m}\right)$

Define \mathbb{U}_{m} to be the multiplicative group of elements that have an inverse in \mathbb{Z}_{m}.

Examples

$$
\begin{aligned}
& \text { 1. } \mathbb{U}_{16}=\{1,3,5,7,11,13,15\} \\
& \text { 2. } \mathbb{U}_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& \text { 3. } \mathbb{U}_{69}= \\
& \{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,25,26,28,29, \\
& 31,32,34,35,37,38,40,41,43,44,47,49,50,52,53,55,56, \\
& 58,59,61,62,64,65,67,68\}
\end{aligned}
$$

Lemma 0
$\left|\mathbb{U}_{p}\right|=\varphi(p)$

Orders

Definition $\left(\operatorname{ord}_{m}(a)\right)$
The function $\operatorname{ord}_{m}(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^{k} \equiv 1(\bmod m)$. In other words, $\operatorname{ord}_{m}(a)=k$

Orders

Definition $\left(\operatorname{ord}_{m}(a)\right)$
The function $\operatorname{ord}_{m}(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^{k} \equiv 1(\bmod m)$. In other words, $\operatorname{ord}_{m}(a)=k$

Examples

$-\operatorname{ord}_{7}(3)=$

Examples of Orders

Definition $\left(\operatorname{ord}_{m}(a)\right)$

The function $\operatorname{ord}_{m}(a)$ calculates the order of an element a in the group, which is the smallest positive integer k such that $a^{k} \equiv 1(\bmod m)$. In other words, $\operatorname{ord}_{m}(a)=k$

Examples

$-\operatorname{ord}_{7}(3)=6$

$$
\begin{array}{lll}
3^{1} \equiv 1(\bmod 7) & 3^{3} \equiv 6(\bmod 7) & 3^{5} \equiv 5(\bmod 7) \\
3^{2} \equiv 2(\bmod 7) & 3^{4} \equiv 4(\bmod 7) & 3^{6} \equiv 1(\bmod 7)
\end{array}
$$

So the order of 3 in \mathbb{U}_{7} is 6 .

Remark

$\operatorname{ord}_{m}(n)$ is only defined when $\operatorname{gcd}(m, n)=1$ (due to Bezout)

Lemma 18
If $\operatorname{ord}_{m}(a)=r$ and $\operatorname{ord}_{m}(b)=s$ and $\operatorname{gcd}(r, s)=1$, then $r s=\operatorname{ord}_{m}(a b)$

Generators

Definition

We say an element a is a generator of \mathbb{U}_{m} if every element in \mathbb{U}_{m} can be expressed in the form a^{k}, where $k \in \mathbb{Z}^{+}$.

Generators

Definition

We say an element a is a generator of \mathbb{U}_{m} if every element in \mathbb{U}_{m} can be expressed in the form a^{k}, where $k \in \mathbb{Z}^{+}$.

Examples

- Is 3 a generator in \mathbb{U}_{7} ?

Examples of Generators

Definition

We say an element a is a generator of \mathbb{U}_{m} if every element in \mathbb{U}_{m} can be expressed in the form a^{k}, where $k \in \mathbb{Z}^{+}$.

Examples

- Is 3 a generator in \mathbb{U}_{7} ?

$$
\begin{array}{lll}
3^{1} \equiv 1(\bmod 7) & 3^{3} \equiv 6(\bmod 7) & 3^{5} \equiv 5(\bmod 7) \\
3^{2} \equiv 2(\bmod 7) & 3^{4} \equiv 4(\bmod 7) & 3^{6} \equiv 1(\bmod 7)
\end{array}
$$

3 is a generator as shown from the list of congruences, it can generate all elements of $\mathbb{U}_{7}=\{1,2,3,4,5,6\}$

Cyclicity

Definition

\mathbb{U}_{m} is cyclic if there exists a generator in \mathbb{U}_{m}.

Cyclicity

Definition

\mathbb{U}_{m} is cyclic if there exists a generator in \mathbb{U}_{m}.
Examples

- Is \mathbb{U}_{7} cyclic?

Cyclicity

Definition

\mathbb{U}_{m} is cyclic if there exists a generator in \mathbb{U}_{m}.
Examples

- Is \mathbb{U}_{7} cyclic?

Yes, \mathbb{U}_{7} is cyclic since there exists a generator: namely, 3, such that it can generator all the elements in the group.

So... when is \mathbb{U}_{m} cyclic?

m	\mathbb{U}_{m}	$\max \left(\operatorname{ord}_{m}(a) \mid a \in \mathbb{U}_{m}\right)$
1	[]	1
2	$[1]$	1
3	$[1,2]$	2
4	$[1,3]$	2
5	$[1,2,3,4]$	4
6	$[1,5]$	2
7	$[1,2,3,4,5,6]$	6
8	$[1,3,5,7]$	2
9	$[1,2,4,5,7,8]$	6
10	$[1,3,7,9]$	4
11	$[1,2,3,4,5,6,7,8,9,10]$	10
12	$[1,5,7,11]$	2
13	$[1,2,3,4,5,6,7,8,9,10,11,12]$	12
14	$[1,3,5,9,11,13]$	6
15	$[1,2,4,7,8,11,13,14]$	4

Patterns in \mathbb{U}_{m}

m	\mathbb{U}_{m}	$\max \left(\operatorname{ord}_{m}(a) \mid a \in \mathbb{U}_{m}\right)$
1	[]	1
2	$[1]$	1
3	$[1,2]$	2
4	$[1,3]$	2
5	$[1,2,3,4]$	4
6	$[1,5]$	2
7	$[1,2,3,4,5,6]$	6
8	$[1,3,5,7]$	2
9	$[1,2,4,5,7,8]$	6
10	$[1,3,7,9]$	4
11	$[1,2,3,4,5,6,7,8,9,10]$	10
12	$[1,5,7,11]$	2
13	$[1,2,3,4,5,6,7,8,9,10,11,12]$	12
14	$[1,3,5,9,11,13]$	6
15	$[1,2,4,7,8,11,13,14]$	4

Conjectures!

Given the patterns here are some conjectures we can form:
\square when m is prime then, \mathbb{U}_{m} is cyclic
\square when m is p^{k} where p is an odd prime then, \mathbb{U}_{m} is cyclic
\square when m is $2 \cdot p^{k}$ where p is an odd prime then, \mathbb{U}_{m} is cyclic when m is 4 then, \mathbb{U}_{m} is cyclic

\mathbb{U}_{m} and connections to $\mathbb{Z}_{m}[x] \ldots$

To prove our conjectures, we take a slight detour into the ring of polynomials modulo m. For the sake of brevity and conciseness we will be using the following theorems/lemmas to aid us (without proof):

1. (UFT) If $f(x)$ is an element of $\mathbb{Z} m[x]$ and has degree n, then $f(x)$ has at most n distinct roots
2. (Euler's Theorem) All units satisfy the equation $x^{\varphi(m)}-1 \equiv 0$ $\bmod m$
3. If $f(x)=p(x) q(x)$, then the set of roots of $p(x)$ are a subset of the set of roots of $f(x)$

Proof that \mathbb{U}_{p} is cyclic

Let a be the generator of Up. Up is cyclic when $\operatorname{ord}_{p}(a)=\varphi(p)=p-1$. In addition, by Euler's totient theorem, all units satisfy the equation $x^{p-1}-1 \equiv 0 \bmod m$. Let,

$$
p-1=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

Therefore,

$$
p_{i}^{e_{i}}\left|p-1 \Longleftrightarrow x^{p_{i}^{e_{i}}}-1\right| x^{p-1}-1
$$

Proof that \mathbb{U}_{p} is cyclic (continued)

Since,

$$
p_{i}^{e_{i}}\left|p-1 \Longleftrightarrow x^{p_{i}^{e_{i}}}-1\right| x^{p-1}-1
$$

and,

$$
p_{i}^{e_{i}-1}\left|p_{i}^{e_{i}} \Longleftrightarrow x^{p_{i}^{e_{i}}-1}-1\right| x^{p_{i}^{e_{i}}}-1
$$

The roots of $x^{p_{i}^{e_{i}}-1}-1$ is a subset of the roots of $x^{p_{i}^{e_{i}}}-1$, which is also a subset of the roots of $x^{p-1}-1$.

Proof that \mathbb{U}_{p} is cyclic (continued)

$x^{p_{i}^{p_{i}}}-1$ has $p_{i}^{e_{i}}$ distinct roots with order $1, p_{i}, p_{i}^{2}, \ldots, p_{i}^{e_{i}}$ because the orders must divide $p_{i}^{e_{i}}$
$x^{p_{i}^{p_{i}}-1}-1$ has $p_{i}^{e_{i}}-1$ distinct roots with order $1, p_{i}, p_{i}^{2}, \ldots, p_{i}^{e_{i}-1}$ because the orders must divide $p_{i}^{e_{i}-1}$

So, of the $p_{i}^{e_{i}}$ roots, the number of roots with order $p_{i}^{e_{i}}$ is $p_{i}^{e_{i}}-p_{i}^{e_{i}-1}$

This means that it is always possible to find an element in \mathbb{U}_{p} that has order $p_{i}^{e_{i}}$ for all $i \in \mathbb{Z}^{+}$

Proof that \mathbb{U}_{p} is cyclic (continued)

Let $a_{1}, a_{2}, \ldots, a_{n}$ be the units with order $p_{1}^{e_{1}}, p_{2}^{e_{2}}, \ldots p_{n}^{e_{n}}$ respectively. $p_{1}^{e_{1}}, p_{2}^{e_{2}}, \ldots p_{n}^{e_{n}}$ are all coprime with each other.

$$
\begin{aligned}
p-1 & =p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}} \\
& =\operatorname{ord}_{p}\left(a_{1}\right) \times \operatorname{ord}_{p}\left(a_{2}\right) \ldots \operatorname{ord}_{p}\left(a_{n}\right) \\
& =\operatorname{ord}_{p}\left(a_{1} a_{2}\right) \times \operatorname{ord}_{p}\left(a_{3}\right) \ldots \operatorname{ord}_{p}\left(a_{n}\right) \\
& =\operatorname{ord}_{p}\left(a_{1} a_{2} a_{3}\right) \times \operatorname{ord}_{p}\left(a_{4}\right) \ldots \operatorname{ord}_{p}\left(a_{n}\right) \\
& =\operatorname{ord}_{p}\left(a_{1} a_{2} \ldots a_{n}\right)
\end{aligned}
$$

Since \mathbb{U}_{p} is closed under multiplication, $a_{1} a_{2} \ldots a_{n}$ is an element of \mathbb{U}_{p}, more specifically, it is a generator of \mathbb{U}_{p}. Therefore, \mathbb{U}_{p} is cyclic.

Proof that $\mathbb{U}_{p^{k}}$ is cyclic

Let $u \in \mathbb{U}_{p^{k}} . u$ is a generator if $\operatorname{ord}(u)=\varphi\left(p^{k}\right)$.

$$
\begin{aligned}
\varphi\left(p^{k}\right) & =p^{k}\left(1-\frac{1}{p}\right) \\
& =p^{k-1}(p-1) \\
& =p^{k-1}\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}\right)
\end{aligned}
$$

Consider $x^{\varphi\left(p^{k}\right)}-1$., Similar to the proof of before, we can show that there are units with order $p_{1}^{e_{1}}, p_{2}^{e_{2}}, \ldots p_{n}^{e_{n}}$. Multiplying these units will allow us to construct a generator, proving that $\mathbb{U}_{p^{k}}$ is cyclic.

Proof that $\mathbb{U}_{2 p^{k}}$ is cyclic

Using a similar argument previously, we find that

$$
\begin{aligned}
\varphi\left(2 p^{k}\right) & =2 p^{k}\left(1-\frac{1}{2}\right)\left(1-\frac{1}{p}\right) \\
& =p^{k-1}(p-1) \\
& =\varphi\left(p^{k}\right)
\end{aligned}
$$

This means that $\mathbb{U}_{p^{k}}$ and $\mathbb{U}_{2} p^{k}$ are isomorphic. Then since $\mathbb{U}_{p^{k}}$ is cyclic; therefore, $\mathbb{U}_{2} p^{k}$ is cyclic.

